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Abstract. A model is proposed for the reorientation dynamics of a confined nematic liquid crystal elas-
tomer, where the effect of crosslinks is to couple the director to deformations of the elastic matrix. The
model combines the (equilibrium) ‘neo-classical’ theory of liquid crystal rubber elasticity with the simplest
time evolution equations for a system described by two coupled, non-conserved order parameters. Relax-
ation from an orientation imposed by an electric field is studied as a function of elastic softness, starting
angle, surface pretilt, and the relative mobilities of director and strain. Most importantly, the absence of a
‘semi-soft’ elastic threshold changes the long-time behaviour of the effective refractive index of the medium
from exponential to inverse power law decay. Predictions are compatible with recent experimental results
by Chang, Chien and Meyer [Phys. Rev. E 56, 595 (1997)].

PACS. 61.30.Cz Theory and models of liquid crystal structure – 61.41.+e Polymers, elastomers, and
plastics

1 Introduction

Liquid crystalline elastomers, also known as solid liq-
uid crystals, consist of (typically weakly) crosslinked
polymer liquid crystals, and combine the extensional
properties of rubber with the easy orientability of the
conventional mesophases. For this reason they may be
termed anisotropic rubbers. Their existence was postu-
lated by de Gennes [1,2]; they were subsequently synthe-
sised by Finkelmann’s and Mitchell’s groups, as well as by
a number of others (see, e.g., [3] and references therein).
Theoretical progress in this area has been reviewed by
Warner and Terentjev [4].

Because mesogenic polymer chains will stretch or flat-
ten on ordering orientationally, the coupling between
director and polymer matrix in elastomers leads to macro-
scopic sample shape changes [5,6]. This is but one of the
many exotic properties exhibited by these materials; oth-
ers include memory effects [7] and stress-induced molec-
ular switching [8]. In addition, Bladon, Terentjev and
Warner [9,10] predicted that application of a strain per-
pendicular to the direction of liquid crystal (LC) align-
ment (the director) could induce discontinuous director
rotation. This is sometimes referred to as an ‘anti-
Frederiks’ transition, as the nematic is anchored in bulk
(to the polymer matrix) and rotates under the influence of
a mechanical field imposed at the surfaces. Such a transi-
tion was indeed observed experimentally by Mitchell and
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co-workers [11,12], while Kundler and Finkelmann [13]
have reported a more intriguing variant of the same phe-
nomenon, where evolution between the initial and final
states, characterised respectively by the director lying per-
pendicular or parallel to the direction of applied strain,
proceeds via an intermediate, non-uniform ‘stripe-domain’
state. Terentjev and Warner [14,15] have interpreted the
latter result in terms of their molecular theory of elas-
tomers [16], which is able to deal with non-linearities and
discontinuities.

In another recent development, Meyer and co-workers
reported an electro-optical study of a confined nematic
elastomer gel [17]. Switching of this material by an ap-
plied electrical field differs in several important respects
from the Frederiks transition in ordinary nematics. Firstly,
it is characterised by a threshold field, rather than volt-
age. Secondly, this field is much higher than expected for
an ordinary Frederiks cell, which indicates that the rele-
vant length scale in the system is much smaller than the
film thickness. Finally, uniaxial symmetry is preserved at
all stages of switching. These results have been explained
by assuming that, as a consequence of network forma-
tion in the nematic phase, an anisotropic gel is uniformly
distributed throughout the LC which produces a mean
orienting effect described as an effective internal field ap-
plied along the director. The external field would then ‘see’
the lengthscale of static director distortions perpendicular
to this effective internal field, rather than the whole film
thickness.

Although the above picture fits the experimental data
reasonably well, a new length scale has to be invoked
in order to give an interpretation in terms of a classical
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Fig. 1. Experimental geometry considered: At t = 0, the ne-
matic director n makes an angle θ0 with the x-axis. On switch-
ing off the field n, parametrised by the angle θ, relaxes towards
the pretilt α induced by the bounding plates. The only allowed
strain is λxz, which relaxes to zero.

Frederiks transition. It would be more natural to look to
the theory of nematic elastomers for a description. The
first, linear, continuum picture of these materials is due
to de Gennes [18], who wrote down a (phenomenological)
free energy density in terms of two energy scales D1 and
D2. These penalise, respectively, director rotations with
respect to the polymer matrix, and shear deformations of
the polymer matrix relative to the director. However, the
only way fully to account for non-linearities and discon-
tinuities, is to use a molecular approach. Terentjev and
co-workers [19] have shown that the neo-classical theory
of elastomers [4] predicts the existence of a threshold field
as a consequence of the fact that, in a nematic elastomer,
the director is anchored in bulk to the elastic network.
The same theory also explains why the symmetry of the
observed pattern remains uniaxial during the experiment.

Here I employ the above microscopic formalism to
model relaxation from an externally-imposed orienta-
tion. This is inspired by the dynamical results reported
in [17], but not restricted to their interpretation; rather,
it is attempted to extract the general trends of such non-
equilibrium behaviour as functions of elastomer material
parameters, initial orientation and boundary conditions.
This paper is organised as follows: in Section 2 the static
theory of [19], upon which the present work is based, is
briefly summarised. The dynamical model is then intro-
duced, and its evolution equations solved in Section 3.
Finally in Section 4 the relevance of the present theory to
Meyer’s findings is discussed.

2 Theory

2.1 The free energy

Consider, as in [19], a macroscopically uniform sample
of nematic elastomer sandwiched between two aligning
plates inducing a (typically small) pretilt α (see Fig. 1).
This is the standard ‘splay’ geometry for the Frederiks
transition. We assume that, when an electric field is ap-
plied perpendicular to the plane of the cell, the director

n rotates in the xz-plane and is parametrised by the an-
gle θ it makes with the x-axis, which is a function of the
coordinate z only (see Fig. 1). It is also useful to define
the angle by which reorientation occurs, ω = θ − α. As
discussed in [19], in an elastomer any director rotation
is associated with an elastic deformation. In particular, a
rotation in the xz-plane may give rise to non-zero strain
tensor components λxx, λzz (and λyy via the incompress-
ibility constraint), as well as, foremostly, to the shears λxz
and λzx – all of which can be functions of z. Restrictions
arise, however, from the requirement of mechanical (in fact
geometrical) compatibility, ∂λij/∂xi = ∂λii/∂xj . Whence
if, e.g., λxx(z) 6= 1, then λxz must be a function of x, con-
trary to our assumption of pure z-dependence; likewise,
λzx(z) 6= 0 implies λzz(x), etc. The only simple way out
seems to be to have just a shear λxz(z) while keeping all
other components of the strain tensor constant:

λ =

 1 0 λxz
0 1 0
0 0 1

 , (1)

and consequently we are left with just two relevant vari-
ables, θ and λxz . In this paper we restrict ourselves to
spatially homogeneous strains and tilts (see below), but
retain the above form with a view to future generalisa-
tions of the formalism.

The neo-classical free energy density (FED) of a semi-
soft nematic rubber is then [4,19],

f =
1

2
µTr

[
`0λ

T `−1λ
]
+

1

2
µA [sin(θ − α)−λxz cos θ cosα]

2

−
1

2
ε0∆εE

2 sin2 θ, (2)

where µ = n×kBT is the rubber energy scale (with n×
the number of chain strands per unit volume), ` is the
persistence length tensor describing the chain shape (the
subscript 0 referring to the state prior to the deformation),
A is the semi-soft parameter, E the applied electric field,
ε0 the dielectric permitivity of the vacuum, and ∆ε the
dielectric anisotropy of the LC elastomer. In its principal
axes frame, ` can be written as:

` =

 `‖ 0 0
0 `⊥ 0
0 0 `⊥

 = `⊥

 r 0 0
0 1 0
0 0 1

 , (3)

where r = `‖/`⊥ is the ratio of principal chain step lengths
(chain anisotropy). If the director n is rotated by Ω in
the xz-plane, then `(Ω) = RT (Ω)`R(Ω), R(Ω) being
the appropriate (in this case two-dimensional) rotation
matrix [20]. Finally, the semi-soft elasticity coefficient A
subsumes all the (microscopic) sources of inhomogeneity
(fluctuations in the composition, or the length, of strands
between crosslinks, impurities, . . . ) that act as barriers to
rotation; these are discussed in more detail elsewhere [15].
When A = 0 (soft elasticity) there exist deformations of
the unconstrained elastomer which cost no energy, there-
fore the threshold strain for such deformations in a given
material will give a measure of A; typically, A� 1.
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Equation (2) is a generalisation of equation (3) of [19]
to the case of nonzero pretilt. The static analysis of [19]
now proceeds by minimising the FED with respect to λxz
and θ (in this order), thereby obtaining an expression for
the optimal director angle θ(E). The existence of a thresh-
old field Ec is thus immediately revealed which is a func-
tion of the chain anisotropy r and of the semi-softness A.

In what follows we shall neglect inhomogeneities, i.e.,
assume both strain and director to be spatially uniform,
hence the absence of gradient terms in equation (2). This
is to be expected from the fact that the rubber energy scale
is much larger than that of LC elasticity [21]; and appears
to be confirmed by direct observation [17]. In addition,
in [19] the static features of the Frederiks transition have
been successfully modelled, for the two sample thicknesses
investigated, under the assumption of spatial homogene-
ity, which lends it strong support. Note, however, that in
nematic solids uniform rotations are also penalised.

Only the dynamics of relaxation upon removal of the
external field will be considered, so we set E = 0. Using
equations (2, 3), the reduced FED becomes

2f

µ
= 3 +

(r − 1)
2

r
sin2 (θ − α) +

r − 1

r
λxz sin (θ − α)

× [(r + 1) cos (θ + α)− (r − 1) cos (θ − α)]

+
λ2
xz

r

[
1 + (r − 1) sin2 α

] [
1 + (r − 1) sin2 θ

]
+A [sin(θ − α)− λxz cos θ cosα]

2
, (4)

from which in the limit of small rotation angles and
shears relative to the undistorted state, microscopic ex-
pressions can be derived for the de Gennes coefficients,
viz., D1 = µ(`‖ − `⊥)2/(`‖`⊥), D2 = µ(`2‖ − `

2
⊥)/(`‖`⊥).

The relation between continuum elastic and microscopic
theories of elastomers has been examined by Olmsted [22].

2.2 The evolution equations

The simplest dynamical (i.e., non-equilibrium) model is
constructed by equating the rate of change of the relevant
variables to the gradient of the FED, corresponding to two
non-conserved order parameters:

∂θ

∂t
= −Γθ

∂(2f/µ)

∂θ
, (5)

∂λxz

∂t
= −Γλ

∂(2f/µ)

∂λxz
, (6)

where Γθ, Γλ are, respectively, the director and strain
‘mobilities’: Γθ = µ/(2γ1), with γ1 the LC viscosity. The
model thus constructed is purely dissipative, i.e., it does
not include any coupling to hydrodynamic variables (only
sound waves, as the elastomer is a solid). This may ap-
pear a drastic simplification, but notice that the speed of
sound in an elastomer is of the order of m/s. As a typi-
cal experimental sample is a few centimeters in size, any
sound waves will traverse it in ∼ 10−2 s, much less than
the duration of a reorientation experiment (∼ 102 s, see
[17]). Moreover, we are neglecting solvent diffusion and
related effects.

3 Results

3.1 Asymptotic analysis

Equations (5, 6) are non-linear ordinary differential equa-
tions, and can only be solved numerically. However, it
is instructive to study their asymptotic behaviour, when
θ ∼ α and λxz ∼ 0. This is amenable to analytic treat-
ment in the case where the strain λxz relaxes much faster
than the director (i.e., Γλ/Γθ � 1), corresponding to the
network ‘instantaneously’ adopting such configuration as
minimises f∗ at the given θ = θ(t). Minimisation of f∗

with respect to λxz yields, for α = 0,

λ∗xz =
(Ar − r + 1) sin 2θ

Ar + r + 1 + (Ar − r + 1) cos 2θ
· (7)

Inserting equation (7) into the FED, equation (4), and
expanding to O(θ4), we obtain

1

µ
f∗asymp(θ) =

3

2
−

1

2
p θ2 +

1

4
q θ4 +O(θ6), (8)

p = −
A (r − 2)

2

1 + Ar
≤ 0, (9)

q=
2
(
3−4A−6r−2Ar−4A2r+3r2+5Ar2+7A2r2−A2r3

)
3 (1+Ar)2 ·

(10)

If A = 0, p = 0 and q = 2(r − 1)2, i.e., the harmonic
term vanishes and quartic (soft) elasticity dominates; this
has important qualitative consequences, as we shall see
shortly. Equation (5) with equation (8), viz.

∂θ

∂t
= −2Γθ

(
−p θ + q θ3

)
, (11)

is readily integrated to give (recall that p ≤ 0)

θ(t) =

(
−
p

q

)1/2 [(
1−

p

q θ2
0

)
exp (−4pΓθt)− 1

]−1/2

,

(12)

where θ0 ≡ θ(t = 0). In the soft elastic limit, A → 0,
equation (12) becomes

θ(t) =
[
8(r − 1)2Γθt+ θ−2

0

]−1/2
. (13)

At very long times (t � Γ−1
θ ) we have, from equations

(13, 12), respectively,

θ(t) ∼ t−1/2 (A = 0), (14)

θ(t) ∼ exp (2pΓθt) (A 6= 0), (15)

as can be inferred by inspection of equation (11).
Thus a semi-soft medium relaxes exponentially, while a
soft medium exhibits algebraic (power-law) relaxation.
(Indeed, one intuitively expects a rigid medium to re-
lax faster than a soft one.) The qualitatively different be-
haviours are related to the presence (A 6= 0) or absence
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Fig. 2. Reduced optical path difference δ∗ vs. time in a soft
elastomer (A = 0) with fast strain (Γθ/Γλ = 0.1) and no pretilt
(α = 0). The upper line of each style is the numerical result,
the lower one the analytical approximation (see the text for
details). θ0 = 15◦ (solid lines), 45◦ (dashed), and 75◦ (dot-
ted). The short straight line on the right gives the predicted
asymptotic slope, −1. This is a double logarithmic plot.

(A = 0) of a quadratic term in f∗asymp, equations (8, 9),
which modifies the torque on the director: soft elasticity is
‘critical’ or ‘massless’, whereas semi-soft elasticity is ‘non-
critical’ or ‘massive’; by analogy one might say that soft
elastic modes are ‘critically slowed down’ [23]. Although
this result was obtained in the fast-strain limit, it appears
to be true for all ratios Γθ/Γλ investigated, see Figure 4,
with the same power-law exponent.

If α 6= 0 it is convenient to rewrite the FED in terms
of ω = θ − α. In the same fast strain limit as above, we
now get

1

µ
f∗asymp(ω) =

3

2
−

1

2
p′ ω2 +

1

3
κω3 +

1

4
q′ ω4 +O(ω5).

(16)

Here p′, κ, and q′ are given by rather long (and not par-
ticularly useful in the present context) expressions. The
most important change is that for non-zero pretilt, there
is always a non-vanishing p′ (i.e., conventional harmonic
elasticity), and therefore exponential decay, even if A = 0.
Physically, this means that no soft deformations are pos-
sible in the present geometry starting from a director at
an angle α 6= 0 to the bounding plates (with the obvi-
ous exception of trivial body rotations). Such a conclu-
sion follows from the analysis of Olmsted [22]: the form
of our strain tensor, equation (1), as dictated by the re-
quirements that the plates be fixed and that all λij be
functions of z only, is incompatible with the general form
of a soft deformation, equation (3.6) in [22], which would
contain more non-vanishing components. Because an iden-
tically null pretilt is difficult to achieve in practice, we
are led to expect that virtually all elastomers will behave
(dynamically at least) as semi-soft, i.e., will relax expo-

nentially [24]. In addition, equation (16) contains a cubic
term, which implies that a closed expression for θ(t) anal-
ogous to equation (13) can no longer be derived.

Experimentally, one measures by conoscopy the inten-
sity of light transmitted through the cell. This is a function
of the difference in optical path for ordinarily and extraor-
dinarily polarised rays, δ = d(ne − no)/λ, where d is the
cell thickness, λ is the wavelength of light, and ne − no

the birefringence, with ne and no the extraordinary and
ordinary refractive indices, respectively. For normal light
incidence, the birefringence will change as the director ro-
tates:

δ =
d

λ
[neff(α) − neff(θ)] , (17)

n2
eff(Θ) =

n2
e n

2
o

n2
o + (n2

e − n
2
o) sin2Θ

, (18)

where the dummy argument Θ = α or θ. In the small θ
limit, equation (18) gives

neff(0)− neff(θ) =
ne

2n2
0

(
n2

e − n
2
o

)
θ2

−
ne

4n2
0

[
3

2n2
0

(
n2

e − n
2
o

)2
+

2

3

(
n2

e − n
2
o

)]
θ4 +O(θ6),

(19)

whence it follows that, in the asymptotic regime (t→∞),

δ ∼ t−1 (A = 0), (20)

δ ∼ exp (4pΓθt) (A 6= 0). (21)

3.2 Numerical solution

Equations (5, 6) have been integrated using NAG rou-
tine D02BDF, for r = 1.44 (appropriate to acrylates [11]),
ne = 1.74, no = 1.54 [17], and θ0 = 15◦, 30◦, 45◦, 60◦, 75◦.
Each starting angle is the initial orientation imposed by
a field of varying strength along the z-axis: the stronger
the field, the closer θ0 is to 90◦, as can be seen by min-
imising the FED for E 6= 0. λxz,0 ≡ λxz(t = 0) is cho-
sen to be λ∗xz evaluated at θ = θ0; this corresponds to
an initially-relaxed strain. As a check on the consistency
of the theory, Figures 2 and 3 compare the numerically
calculated reduced optical path difference, δ∗ = λδ/d
(Eqs. (17, 18) with Eq. (5)) with its asymptotic behaviour
for Γθ/Γλ = 0.1 (Eqs. (17, 18) with Eqs. (12) or (13)).
Here, and in the remainder of this paper, time is mea-
sured in units of Γ−1

λ .
The slowing-down effect of soft elasticity (A = 0) is

illustrated in Figure 4 for θ0 = 30◦ and α = 0 (no pretilt).
This is the more marked the faster the director relative to
strain. On the other hand, the starting value of θ substan-
tially affects the short-time (pre-asymptotic) behaviour,
especially in the case of fast strain (see Fig. 5), but has no
influence on the long-time evolution, which depends only
on the shape of the free energy landscape near its minima.
In this connection it is also noteworthy that λxz(t) (shown
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Fig. 3. Same as Figure 2 but for semi-soft elasticity (A =
0.1). The short straight line on the right gives the predicted
asymptotic slope, −0.010965 (see Eq. (21)). Note this is now a
linear-logarithmic plot.
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Fig. 4. Effect of semi-softness: reduced optical path difference
δ∗ vs. time for θ0 = 30◦ and α = 0. The upper line of each
style is the soft elasticity result (A = 0), the lower one the
semi-soft case (A = 0.1). Solid lines: Γθ/Γλ = 1; dashed lines:
Γθ/Γλ = 10; dotted lines: Γθ/Γλ = 0.1. The effect of semi-
softness is particularly pronounced when the director is the
faster variable.

in Fig. 6) is non-monotonic for θ0 ≥ 45◦, owing to the
minimum in λ∗xz(θ) at θ ∼ 40◦. By contrast, inclusion of
a non-zero pretilt has more subtle consequences: it speeds
up soft elastomers (Fig. 7), but can slow down semi-soft
ones (Fig. 8). So far I have been unable to account for this
analytically (see remark following Eq. (16) above): intu-
itively one would expect α 6= 0 always to speed up the
dynamics for a given θ0, as it corresponds to reorienta-
tion through a smaller angle. The pretilt seems strongly
correlated with the mobility: whereas the splitting of the
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Fig. 5. Effect of different starting angles: reduced optical path
difference δ∗ vs. time for a semi-soft elastomer (A = 0.1) with
zero pretilt (α = 0) and Γθ/Γλ = 10 (fast director, lower set of
curves), Γθ/Γλ = 1 (equally fast director and strain, middle set
of curves), and Γθ/Γλ = 0.1 (fast strain, upper set of curves).
Solid lines: θ0 = 15◦; dashed lines: θ0 = 30◦; dotted lines: θ0 =
45◦; dash-dotted lines: θ0 = 60◦; short-dashed lines: θ0 = 75◦.

0.0 2.0 4.0 6.0 8.0 10.0
t

0.00

0.10

0.20

|λ
  | xz

Fig. 6. Modulus of strain λxz vs. time for a soft elastomer
(A = 0) with pretilt α = 3◦ and fast director (Γθ/Γλ = 10).
Solid line: θ0 = 15◦; dashed line: θ0 = 30◦; dotted line: θ0 =
45◦; dash-dotted line: θ0 = 60◦; short-dashed line: θ0 = 75◦.
Results are qualitatively the same for all combinations of A, α
and Γθ/Γλ.

curves for Γθ/Γλ = 10 in Figures 7 and 8 is substantial,
that for Γθ/Γλ = 0.1 is barely noticeable.

4 Discussion

Do these results shed any light on Meyer’s et al.’s findings?
Start by noting that a real-life elastomer if very likely
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Fig. 7. Effect of pretilt: reduced optical path difference δ∗ vs.
time for a soft elastomer (A = 0) initially at θ0 = 60◦, and
Γθ/Γλ = 10 (fast director, lower set of curves), Γθ/Γλ = 1
(equally fast director and strain, middle set of curves), and
Γθ/Γλ = 0.1 (fast strain, upper set of curves). Solid lines: α =
0◦; dashed lines: α = 3◦; dotted lines: α = 10◦. In all cases,
increasing the pretilt accelerates the dynamics.

semi-soft, or ‘non-critical’ (see discussion after Eq. (3)).
Then the theory predicts purely exponential long-time be-
haviour. Yet this does not set in until a time tasymp which
is a function of A, of the starting angle θ0, the pretilt α,
and the relative mobilities of director and strain, Γθ/Γλ.
As in Figure 8 it is the fast-strain curves that cross the
latest into the exponential regime, we can, using equa-
tion (21) and µ ∼ 103−104 J/m3 [19], γ1 = 2.2×104 P [17],
derive upper bounds for tasymp ∼ 100/Γλ = 1000/Γθ ∼ 4 s
and for the exponential relaxation time τ ∼ (−4p′Γθ)

−1 ∼
0.4/A − 4/A s. Hence τ ∼ 50 s as in [17] is achievable if
A ∼ 8×10−2−8×10−3, and the theory is also compatible
with a decay that is experimentally indistinguishable from
exponential (the possible non-exponential character orig-
inally reported by Meyer et al. is now attributed to diffi-
culty in preparing a sufficiently homogeneous thin sample
[19]). Furthermore, as remarked in Section 2, A can be in-
dependently measured from, e.g., the strain threshold for
director rotation in an elastomer stretched perpendicular
to the initial nematic alignment [15].

From Figure 3 of [17] one estimates the accuracy of
Meyer et al.’s measurements as ∼ 10−2, which means that
the asymptotic regimes of Figures 4–8 are practically in-
accessible. The best prospect of experimental verification
thus seems to be to look at the early-time shape of the δ∗

curves for large starting angle θ0, see Figure 5. Alterna-
tively one could follow the evolution of strain, see Figure 6,
by observing, along the z-axis, the motion of ‘tracer’ par-
ticles (e.g., impurities in the LC gel) in a direction in the
plane of the cell; such displacements as have been seen
so far are consistent with the picture proposed here and
in [19].
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Fig. 8. Same as Figure 7, but for the semi-soft case (A =
0.1). Unlike in the soft elastomer, increasing the pretilt first
decelerates (α = 3◦) the decay, although at larger pretilts (α =
10◦) the previously observed accelerative trend is recovered.

I have constructed perhaps the simplest model for the
dynamics of reorientation of a confined nematic elastomer
initially (mis)aligned by an external field. Within this
framework it is possible to interpret the dynamical obser-
vations of Meyer and co-workers. Although experimental
validation for this one particular system may present some
problems, predictions have been made for the behaviour
of elastomers characterised by a whole range of material
parameters and different initial and final alignments, so
adequate tests should be feasible.
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